Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway.

Identifieur interne : 000B22 ( Main/Exploration ); précédent : 000B21; suivant : 000B23

Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway.

Auteurs : H-A Park [États-Unis] ; S. Khanna ; C. Rink ; S. Gnyawali ; S. Roy ; C K Sen

Source :

RBID : pubmed:19373248

Descripteurs français

English descriptors

Abstract

Oxidized glutathione (GSSG) is commonly viewed as a byproduct of GSH metabolism. The pathophysiological significance of GSSG per se remains poorly understood. Adopting a microinjection approach to isolate GSSG elevation within the cell, this work identifies that GSSG can trigger neural HT4 cell death via a 12-lipoxygenase (12-Lox)-dependent mechanism. In vivo, stereotaxic injection of GSSG into the brain caused lesion in wild-type mice but less so in 12-Lox knockout mice. Microinjection of graded amounts identified 0.5 mM as the lethal [GSSG]i in resting cells. Interestingly, this threshold was shifted to the left by 20-fold (0.025 mM) in GSH-deficient cells. This is important because tissue GSH lowering is commonly noted in the context of several diseases as well as in aging. Inhibition of GSSG reductase by BCNU is known to result in GSSG accumulation and caused cell death in a 12-Lox-sensitive manner. GSSG S-glutathionylated purified 12-Lox as well as in a model of glutamate-induced HT4 cell death in vitro where V5-tagged 12-Lox was expressed in cells. Countering glutamate-induced 12-Lox S-glutathionylation by glutaredoxin-1 overexpression protected against cell death. Strategies directed at improving or arresting cellular GSSG clearance may be effective in minimizing oxidative stress-related tissue injury or potentiating the killing of tumor cells, respectively.

DOI: 10.1038/cdd.2009.37
PubMed: 19373248
PubMed Central: PMC2990696


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway.</title>
<author>
<name sortKey="Park, H A" sort="Park, H A" uniqKey="Park H" first="H-A" last="Park">H-A Park</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khanna, S" sort="Khanna, S" uniqKey="Khanna S" first="S" last="Khanna">S. Khanna</name>
</author>
<author>
<name sortKey="Rink, C" sort="Rink, C" uniqKey="Rink C" first="C" last="Rink">C. Rink</name>
</author>
<author>
<name sortKey="Gnyawali, S" sort="Gnyawali, S" uniqKey="Gnyawali S" first="S" last="Gnyawali">S. Gnyawali</name>
</author>
<author>
<name sortKey="Roy, S" sort="Roy, S" uniqKey="Roy S" first="S" last="Roy">S. Roy</name>
</author>
<author>
<name sortKey="Sen, C K" sort="Sen, C K" uniqKey="Sen C" first="C K" last="Sen">C K Sen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19373248</idno>
<idno type="pmid">19373248</idno>
<idno type="doi">10.1038/cdd.2009.37</idno>
<idno type="pmc">PMC2990696</idno>
<idno type="wicri:Area/Main/Corpus">000B05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B05</idno>
<idno type="wicri:Area/Main/Curation">000B05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B05</idno>
<idno type="wicri:Area/Main/Exploration">000B05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway.</title>
<author>
<name sortKey="Park, H A" sort="Park, H A" uniqKey="Park H" first="H-A" last="Park">H-A Park</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khanna, S" sort="Khanna, S" uniqKey="Khanna S" first="S" last="Khanna">S. Khanna</name>
</author>
<author>
<name sortKey="Rink, C" sort="Rink, C" uniqKey="Rink C" first="C" last="Rink">C. Rink</name>
</author>
<author>
<name sortKey="Gnyawali, S" sort="Gnyawali, S" uniqKey="Gnyawali S" first="S" last="Gnyawali">S. Gnyawali</name>
</author>
<author>
<name sortKey="Roy, S" sort="Roy, S" uniqKey="Roy S" first="S" last="Roy">S. Roy</name>
</author>
<author>
<name sortKey="Sen, C K" sort="Sen, C K" uniqKey="Sen C" first="C K" last="Sen">C K Sen</name>
</author>
</analytic>
<series>
<title level="j">Cell death and differentiation</title>
<idno type="eISSN">1476-5403</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Arachidonate 12-Lipoxygenase (genetics)</term>
<term>Arachidonate 12-Lipoxygenase (metabolism)</term>
<term>Carmustine (pharmacology)</term>
<term>Cell Death (drug effects)</term>
<term>Cell Line (MeSH)</term>
<term>Glutathione Disulfide (pharmacology)</term>
<term>Glutathione Disulfide (toxicity)</term>
<term>Lipoxygenase Inhibitors (MeSH)</term>
<term>Membrane Potential, Mitochondrial (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Knockout (MeSH)</term>
<term>Microinjections (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arachidonate 12-lipoxygenase (génétique)</term>
<term>Arachidonate 12-lipoxygenase (métabolisme)</term>
<term>Carmustine (pharmacologie)</term>
<term>Disulfure de glutathion (pharmacologie)</term>
<term>Disulfure de glutathion (toxicité)</term>
<term>Inhibiteurs de la lipoxygénase (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Microinjections (MeSH)</term>
<term>Mort cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Potentiel de membrane mitochondriale (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Souris knockout (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arachidonate 12-Lipoxygenase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arachidonate 12-Lipoxygenase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carmustine</term>
<term>Glutathione Disulfide</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Death</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mort cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arachidonate 12-lipoxygenase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arachidonate 12-lipoxygenase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Carmustine</term>
<term>Disulfure de glutathion</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Glutathione Disulfide</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Disulfure de glutathion</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Lipoxygenase Inhibitors</term>
<term>Membrane Potential, Mitochondrial</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Microinjections</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Inhibiteurs de la lipoxygénase</term>
<term>Lignée cellulaire</term>
<term>Microinjections</term>
<term>Potentiel de membrane mitochondriale</term>
<term>Souris</term>
<term>Souris knockout</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oxidized glutathione (GSSG) is commonly viewed as a byproduct of GSH metabolism. The pathophysiological significance of GSSG per se remains poorly understood. Adopting a microinjection approach to isolate GSSG elevation within the cell, this work identifies that GSSG can trigger neural HT4 cell death via a 12-lipoxygenase (12-Lox)-dependent mechanism. In vivo, stereotaxic injection of GSSG into the brain caused lesion in wild-type mice but less so in 12-Lox knockout mice. Microinjection of graded amounts identified 0.5 mM as the lethal [GSSG]i in resting cells. Interestingly, this threshold was shifted to the left by 20-fold (0.025 mM) in GSH-deficient cells. This is important because tissue GSH lowering is commonly noted in the context of several diseases as well as in aging. Inhibition of GSSG reductase by BCNU is known to result in GSSG accumulation and caused cell death in a 12-Lox-sensitive manner. GSSG S-glutathionylated purified 12-Lox as well as in a model of glutamate-induced HT4 cell death in vitro where V5-tagged 12-Lox was expressed in cells. Countering glutamate-induced 12-Lox S-glutathionylation by glutaredoxin-1 overexpression protected against cell death. Strategies directed at improving or arresting cellular GSSG clearance may be effective in minimizing oxidative stress-related tissue injury or potentiating the killing of tumor cells, respectively.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19373248</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1476-5403</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2009</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Cell death and differentiation</Title>
<ISOAbbreviation>Cell Death Differ</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>1167-79</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/cdd.2009.37</ELocationID>
<Abstract>
<AbstractText>Oxidized glutathione (GSSG) is commonly viewed as a byproduct of GSH metabolism. The pathophysiological significance of GSSG per se remains poorly understood. Adopting a microinjection approach to isolate GSSG elevation within the cell, this work identifies that GSSG can trigger neural HT4 cell death via a 12-lipoxygenase (12-Lox)-dependent mechanism. In vivo, stereotaxic injection of GSSG into the brain caused lesion in wild-type mice but less so in 12-Lox knockout mice. Microinjection of graded amounts identified 0.5 mM as the lethal [GSSG]i in resting cells. Interestingly, this threshold was shifted to the left by 20-fold (0.025 mM) in GSH-deficient cells. This is important because tissue GSH lowering is commonly noted in the context of several diseases as well as in aging. Inhibition of GSSG reductase by BCNU is known to result in GSSG accumulation and caused cell death in a 12-Lox-sensitive manner. GSSG S-glutathionylated purified 12-Lox as well as in a model of glutamate-induced HT4 cell death in vitro where V5-tagged 12-Lox was expressed in cells. Countering glutamate-induced 12-Lox S-glutathionylation by glutaredoxin-1 overexpression protected against cell death. Strategies directed at improving or arresting cellular GSSG clearance may be effective in minimizing oxidative stress-related tissue injury or potentiating the killing of tumor cells, respectively.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>H-A</ForeName>
<Initials>HA</Initials>
<AffiliationInfo>
<Affiliation>Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khanna</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rink</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gnyawali</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roy</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sen</LastName>
<ForeName>C K</ForeName>
<Initials>CK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM069589</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS042617</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS042617-08</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NS42617</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cell Death Differ</MedlineTA>
<NlmUniqueID>9437445</NlmUniqueID>
<ISSNLinking>1350-9047</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016859">Lipoxygenase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.11.31</RegistryNumber>
<NameOfSubstance UI="D001092">Arachidonate 12-Lipoxygenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U68WG3173Y</RegistryNumber>
<NameOfSubstance UI="D002330">Carmustine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001092" MajorTopicYN="N">Arachidonate 12-Lipoxygenase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002330" MajorTopicYN="N">Carmustine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016859" MajorTopicYN="N">Lipoxygenase Inhibitors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053078" MajorTopicYN="N">Membrane Potential, Mitochondrial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008845" MajorTopicYN="N">Microinjections</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19373248</ArticleId>
<ArticleId IdType="pii">cdd200937</ArticleId>
<ArticleId IdType="doi">10.1038/cdd.2009.37</ArticleId>
<ArticleId IdType="pmc">PMC2990696</ArticleId>
<ArticleId IdType="mid">NIHMS99976</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Free Radic Res. 2008 Aug;42(8):689-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18671159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2004 May;187(1):94-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15081592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 May 1;347 Pt 3:821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Apr 28;275(17):13049-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10777609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2000;97(3):531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10828535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):4904-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Aug 22;39(33):10319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10956021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 3;276(31):29596-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2001 Sep;63(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11509739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11824-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2002 Mar-Apr;383(3-4):709-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12033460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2001 Jan;76(2):627-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2002 Sep;9(9):1007-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12181751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 6;277(36):33284-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12068011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2002 Oct;2(11):1567-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12433058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antisense Nucleic Acid Drug Dev. 2002 Oct;12(5):327-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12477282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Jan;17(1):64-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12424221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2003;361:353-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12624920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2003 May;133(5 Suppl 1):1460S-2S</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2003 Apr;384(4):505-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12751781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 13;278(24):21542-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2003 Aug 29;476(3):185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12969765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer. 2004 Apr 15;100(8):1712-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2004 Oct;20(8):2049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1969 Jan 10;244(1):9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5773294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1970 Nov;67(3):1248-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5274454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 1981 Mar;6(3):301-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7279107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1982 Mar 15;202(3):771-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6807297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1983;52:711-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6137189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 1984 Jun;229(3):658-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6726651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1989 Dec 1;38(23):4307-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2512935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jun 25;30(25):6088-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1829380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 1991;49(1-2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1852785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Chem Neuropathol. 1991 Jun;14(3):213-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1958264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 11;257(5076):1496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer. 1993 Apr 1;71(7):2276-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8095848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Physiol Scand. 1993 May;148(1):21-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8333293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Oct 29;262(5134):689-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7901908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Apr 15;221(2):639-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8174544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 1994 Jun 3;172(1):115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8207260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1996 Aug 15;332(2):288-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1997;22(7):1203-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9098094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1997 Aug;19(2):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9292733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 10;272(41):25935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1997 Nov;273(5 Pt 2):R1771-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9374822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Apr 2;274(14):9427-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10092623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1999 Aug;13(11):1467-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10428770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1999 Oct 1;274(1):125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10527505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2005 Feb;312(2):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):999-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2005 May;4(2):288-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15936251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Oct 1;39(7):841-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16140205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 2005 Oct;36(10):2258-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2006 Jan 6;166(1):71-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16140401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Feb 1;40(3):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16443152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Res. 2006 May;55(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2006 Apr;97(2):373-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16539673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 May 26;281(21):14864-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16551630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2006 Jul;52(7):1406-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 2006 Dec;37(12):3014-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17053180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Metab. 2006 Dec;7(8):853-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17168687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2007 Feb;100(3):736-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Neurobiol. 2007 Nov;27(7):959-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18041579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Apr 7;181(1):37-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18378771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2008 Jun 1;75(11):2234-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2008 Jun;294(6):H2435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18375718</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Gnyawali, S" sort="Gnyawali, S" uniqKey="Gnyawali S" first="S" last="Gnyawali">S. Gnyawali</name>
<name sortKey="Khanna, S" sort="Khanna, S" uniqKey="Khanna S" first="S" last="Khanna">S. Khanna</name>
<name sortKey="Rink, C" sort="Rink, C" uniqKey="Rink C" first="C" last="Rink">C. Rink</name>
<name sortKey="Roy, S" sort="Roy, S" uniqKey="Roy S" first="S" last="Roy">S. Roy</name>
<name sortKey="Sen, C K" sort="Sen, C K" uniqKey="Sen C" first="C K" last="Sen">C K Sen</name>
</noCountry>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Park, H A" sort="Park, H A" uniqKey="Park H" first="H-A" last="Park">H-A Park</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19373248
   |texte=   Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19373248" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020